Benzodiazepines block alpha2-containing inhibitory glycine receptors in embryonic mouse hippocampal neurons.

نویسندگان

  • Liu Lin Thio
  • Ananth Shanmugam
  • Keith Isenberg
  • Kelvin Yamada
چکیده

Inhibitory glycine receptors (GlyRs) in the mammalian cortex probably contribute to brain development and to maintaining tonic inhibition. Given their presence throughout the cortex, their modulation likely has important physiological consequences. Although benzodiazepines potentiate gamma-aminobutyric acidA receptors (GABAARs), they may also modulate GlyRs because binding studies initially suggested that they act at GlyRs. Furthermore, their diminished ability to potentiate neonatal GABAARs suggests that they may exert their beneficial clinical effects at another site in the developing brain. Therefore we examined the effect of benzodiazepines on whole cell currents mediated by GlyRs in cultured embryonic mouse hippocampal neurons. First, we determined the GlyR subunit composition in this preparation. Glycine, beta-alanine, and taurine activate strychnine-sensitive chloride currents in a dose-dependent manner. Maximal concentrations of the three agonists produce equal, nonadditive responses as expected of full agonists. The pharmacological properties of the GlyR currents including their pattern of modulation by picrotoxinin, picrotin, and tropisetron indicate that GlyRs consist of alpha2beta heteromers and alpha2 homomers. Reverse transcriptase polymerase chain reaction (RTPCR) studies confirmed the presence of alpha2 and beta subunits. Second, we found that micromolar concentrations of some benzodiazepines, including chlordiazepoxide and nitrazepam, inhibit GlyR currents. Nitrazepam inhibition of GlyRs is noncompetitive, is not voltage dependent, and does not reflect enhanced desensitization. Thus benzodiazepines allosterically inhibit alpha2-containing GlyRs in embryonic mouse hippocampal neurons via a "low"-affinity site.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Benzodiazepines Block 2-Containing Inhibitory Glycine Receptors in Embryonic Mouse Hippocampal Neurons

Thio, Liu Lin, Ananth Shanmugam, Keith Isenberg, and Kelvin Yamada. Benzodiazepines block 2-containing inhibitory glycine receptors in embryonic mouse hippocampal neurons. J Neurophysiol 90: 89–99, 2003. First published March 26, 2003; 10.1152/jn.00612.2002. Inhibitory glycine receptors (GlyRs) in the mammalian cortex probably contribute to brain development and to maintaining tonic inhibition....

متن کامل

Alpha2 subunit specificity of cyclothiazide inhibition on glycine receptors.

In the mammalian cortex, alpha2 subunit-containing glycine receptors (GlyRs) mediate tonic inhibition, but the precise functional role of this type of GlyRs is difficult to establish because of the lack of subtype-selective antagonist. In this study, we found that cyclothiazide (CTZ), an epileptogenic agent, potently inhibited GlyR-mediated current (I(Gly)) in cultured rat hippocampal neurons. ...

متن کامل

Gephyrin is critical for glycine receptor clustering but not for the formation of functional GABAergic synapses in hippocampal neurons.

The role of the scaffolding protein gephyrin at hippocampal inhibitory synapses is not well understood. A previous study (Kneussel et al., 1999) reported a complete loss of synaptic clusters of the major GABA(A)R subunits alpha2 and gamma2 in hippocampal neurons lacking gephyrin. In contrast, we show here that GABA(A)R alpha2 and gamma2 subunits do cluster at pyramidal synapses in hippocampal c...

متن کامل

Zinc enhances the inhibitory effects of strychnine-sensitive glycine receptors in mouse hippocampal neurons.

Although extracellular Zn(2+) is an endogenous biphasic modulator of strychnine-sensitive glycine receptors (GlyRs), the physiological significance of this modulation remains poorly understood. Zn(2+) modulation of GlyR may be especially important in the hippocampus where presynaptic Zn(2+) is abundant. Using cultured embryonic mouse hippocampal neurons, we examined whether 1 microM Zn(2+), a p...

متن کامل

Loss of postsynaptic GABA(A) receptor clustering in gephyrin-deficient mice.

The tubulin-binding protein gephyrin, which anchors the inhibitory glycine receptor (GlyR) at postsynaptic sites, decorates GABAergic postsynaptic membranes in various brain regions, and postsynaptic gephyrin clusters are absent from cortical cultures of mice deficient for the GABA(A) receptor gamma2 subunit. Here, we investigated the postsynaptic clustering of GABA(A) receptors in gephyrin kno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 90 1  شماره 

صفحات  -

تاریخ انتشار 2003